2y^2+23y+4=16

Simple and best practice solution for 2y^2+23y+4=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y^2+23y+4=16 equation:



2y^2+23y+4=16
We move all terms to the left:
2y^2+23y+4-(16)=0
We add all the numbers together, and all the variables
2y^2+23y-12=0
a = 2; b = 23; c = -12;
Δ = b2-4ac
Δ = 232-4·2·(-12)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-25}{2*2}=\frac{-48}{4} =-12 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+25}{2*2}=\frac{2}{4} =1/2 $

See similar equations:

| 6n+12=-12 | | d/5=11.13 | | 3x-5=12+4x | | 6-5(4a+4)=114 | | 4(3x-5)-6(2x+3)=0 | | -2x-23=6x+25/ | | 7a+4=35 | | 4x+7=8x+14 | | 4x–26=5(2–x) | | -15c-17=8-14c-15 | | 6(z+4)+4z=8(z+2) | | p+p−2p+4p=−48 | | (n/4)+1=5 | | 3(2x-7)-5(x-2)=10 | | 3n+8+2=-14+15n | | 17+5b=77 | | 5k+5=-3 | | 3(5x+4)=87 | | -5x+12=-4x-8 | | 8x-21=5x•8 | | 355+x=645 | | 6.5+x=10 | | 8x-10-3x-15=-20 | | 19-9r=-r-14-5r | | w/3+3=7 | | 3/k+17=19 | | 5m-3=33 | | k^2-10k+2=-19 | | 8x21=-5x•8 | | 0.5x+8=4 | | -16+4u+5=17u+15 | | –43=3q–10 |

Equations solver categories